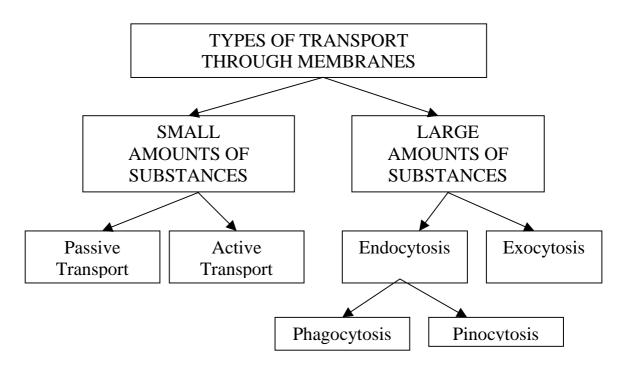

CYTOPLASM AND MEMBRANES

Cytoplasm


- The cytoplasm of plant cells is about 95% water, and of animal and bacterial cells is about 70% water.
- There are <u>different concentrations of both water-soluble and oil-soluble</u> <u>substances in the cytoplasm</u> that must pass into and out of the cell and organelle membranes.

Membranes

- Cell and organelle membranes have the same chemical composition, but the cell membrane is thicker.
- Fluid-Mosaic Model Membranes are about 1/2 lipid and 1/2 protein, forming a 2-layered structure. This is called a <u>bilayer of phospholipid molecules interspersed</u> with many protein molecules. The phospholipid molecules have one end that is <u>hydrophobic</u> ('water-hating') and the other end that is <u>hydrophilic</u> ('water-loving'). Individual lipid molecules and some protein molecules are free to move within the layers.

Refer to the Fluid Mosaic Model of the Cell Membrane diagram in your textbook.

Membranes are <u>differentially permeable</u> because they allow some substances to pass through easily, and not others. Small uncharged molecules (e.g. oxygen and carbon dioxide) and water molecules can pass through easily. Lipid-soluble substances (e.g. alcohol) also pass through easily by dissolving into the phospholipid bilayer. Most water-soluble molecules (e.g. mineral ions, amino acids and simple sugars) can only pass through the channels made by the interspersed protein molecules, and require energy for transport.

TRANSPORT OF SMALLER QUANTITIES THROUGH MEMBRANES

SOLUTES, SOLVENTS AND SOLUTIONS

- <u>Solution</u> a mixture where one substance dissolves in another (e.g. saltwater)
- <u>Solute</u> the substance that dissolves (e.g. salt in saltwater)
- <u>Solvent</u> the substance that does the dissolving (e.g. water in saltwater)

PASSIVE TRANSPORT

- Passive Transport uses <u>no energy</u>
- Substances move from <u>high to low concentrations</u>
- <u>Diffusion</u> is the movement of substances from high to low concentration. Oilsoluble substances pass through the lipid part of membranes easily by diffusion also.
- <u>Osmosis</u> is the diffusion of water. Water diffuses through the membranes by either slow diffusion through the lipid bilayer, or through protein channels.

ACTIVE TRANSPORT

- Active Transport requires energy from energy-rich ATP molecules.
- Substances move from <u>low to high concentrations</u>.
- ♦ <u>Glucose</u> is water-soluble, but requires some energy to be transported. First, proteins in the membrane 'pump' hydrogen ions (H⁺) out of the cell. This requires the energy of ATP. Then the hydrogen ion (H⁺) attaches to the glucose molecule to transport it into the cell through proteins in the membrane. Hormones such as adrenalin can attach to a membrane to increase the transport of glucose into a muscle cell.
- ♦ <u>Mineral Ions (potassium K⁺, sodium Na⁺, calcium Ca²⁺)</u> are carried through the membrane either by ion-transporting proteins (a process that requires the energy of ATP), or by slow diffusion, since ions are water-soluble. Examples of ion

transport are calcium ions in muscle cells, and potassium and sodium ions in nerve cells.

<u>Exocytosis</u>

Exocytosis is the removal of large quantities of substances (e.g. milk from milk glands, venom from venom glands) out of a cell. The transport of large quantities occurs when vesicles containing the substances bind temporarily with the cell membrane.

• Endocytosis

Endocytosis is the intake of large quantities of substances (e.g. infective bacteria, food for protozoans) into a cell. Endocytosis has 2 types:

- 1. <u>Phagocytosis</u> (e.g. protozoans feeding, white blood cells engulfing invading bacteria)
- 2. <u>Pinocytosis</u> (e.g. human egg taking in food such as oil in droplet form)

DIFFUSION	OSMOSIS	ACTIVE TRANSPORT
Transport of gases or	Transport of water	Transport of a substance
dissolved substances in	through a semi-permeable	from low to high
solution from a region of	membrane from a solution	concentration regions,
high concentration to a	of high concentration to a	using energy from the cell,
region of low	solution of low	through a living membrane
concentration	concentration	
1. Liquids and gases can	Water only transported	Certain selected solutes,
diffuse over considerable	over a short distance	ions, glucose, sucrose,
distances		amino acid, etc.,
		transported through short
		distances
2. Rapid in gases, but slow	Slow process	Rapid process
in solutions of substances		
3. Transport from high to	Transport of water from	Transport of selected
low concentration	solution of high to low	substances from region of
	concentration	low to high concentration
4. Occurs with or without	Either a living or non-	A living selective lipo-
a non-living permeable	living semi-permeable	protein membrane is
membrane	membrane needed	essential
5.No cell energy required	No cell energy required	Cell energy from ATP
		required

COMPARISON OF DIFFUSION, OSMOSIS AND ACTIVE TRANSPORT

SURFACE AREA TO VOLUME RELATIONSHIP

- All organisms must exchange materials with their environment through membranes. Because their requirements are greater, large organisms must exchange more material than small organisms.
- As any object gets larger, its volume increases more rapidly than its surface area.

Side Length	Surface Area	Volume	S.A. to Volume
			Ratio
1 cm	6 cm^2	1cm^3	6
10 cm	600 cm^2	1000cm^{3}	0.6

- In the table, while the volume increases 1000 times, the surface area only increases 100 times.
- Very small organisms have the most effective materials exchange through membranes by having a round shape.
- One way that larger organisms overcome the problem is to change shape. For example, flatworms and algae are flattened in shape for greater surface area.