<u>CO-DOMINANCE AND MULTIPLE ALLELES</u> (AN EXAMPLE OF ABO BLOOD TYPES)

- <u>Co-Dominance</u> occurs when both genes/alleles in the genotype are equally dominant.
- <u>Multiple Alleles</u> occurs when more than 2 genes/alleles determine a characteristic, such as in ABO blood groups.

• Example of ABO Blood Types

There are 4 different blood types – A, B, AB and O.

BLOOD	GENOTYPE	ANTIGEN	ANTIBODY
TYPE		PRESENT	PRODUCED
OR			
PHENOTYPE			
А	AA or AO	А	Anti-B
В	BB or BO	В	Anti-A
AB	AB	A and B	none
0	00	none	Anti-A and Anti-B

• Example 1 – Blood Types

Mum has blood type AB and Dad has blood type O. The possible blood types of the children are ...

	А	В
0	AO	BO
0	AO	BO

Possible genotypes = 1 AO : 1 BO Possible phenotypes = 1 A : 1 B

 $\frac{1}{2}$ the children will be A blood type, and the other $\frac{1}{2}$ will be B blood type.

• Example 2 – Blood Types

Mum has A blood type and Dad has AB blood type. The possible children's blood types are ...

First Possibility

	А	А		
А	AA	AA		
В	AB	AB		

Possible genotypes = 1 AA : 1 AB

Possible phenotypes = 1 A : 1 AB

 $\frac{1}{2}$ the children will have blood type A, and the other $\frac{1}{2}$ will have blood type AB.

Second Possibility

	А	0
А	AA	AO
В	AB	BO

Possible genotypes =1AA:1AO:1AB:1BO

Possible phenotypes = 2 A : 1 AB: 1 B

 $^{1\!/_2}$ will have blood type A, $^{1\!/_2}$ will have blood type AB, and $^{1\!/_2}$ will have blood type B.

ANTIGENS AND ANTIBODIES IN ABO BLOOD TYPES

- ♦ The blood type is so-called because the blood contains particular <u>antigens</u> A, B, both A and B, or neither A nor B.
- The body produces antibodies to neutralise any particle (e.g. bacteria, dust, foreign blood in transfusions) that it recognises as foreign. For example, if blood type A contains Antigen A, then it will produce <u>antibodies</u> against B blood type (Anti-B Antibody), because B antigens are foreign. Similarly, if blood type O contains neither antigens A nor B, then a person with blood type O would produce anti-A and anti-B antibodies.
- ♦ <u>Agglutination or 'Clumping'</u> If antigen-A came in contact with the antibody against it (Anti-A), then the blood would clump or clot. This could occur in an incorrect blood transfusion.
- <u>Universal Recipient</u> This is a person with blood type <u>AB</u> who can receive a blood transfusion from any of the other blood types.
- <u>Universal Donor</u> This is a person with blood type <u>O</u> who can donate blood to any other blood type.

<u>COMPLETE DOMINANCE OR DOMINANT-RECESSIVE INHERITANCE</u> (AN EXAMPLE OF RHESUS FACTOR IN ABO BLOOD TYPES)

- The ABO blood types are sub-divided into positive and negative types also, depending on whether that blood type does or does not contain the Rhesus Factor.
- If the Rhesus Factor is present, the genotype contains one or two R genes/alleles. If the Rhesus Factor is absent, the genotype is rr.

Blood	ABO	Rhesus	ABO	Rhesus
Туре	Antigens	Antigens	Genotype	Genotype
	Present	Present		
A+	А	yes	Aa or AO	RR or Rr
A-	А	no	AA or AO	rr
B+	В	yes	BB or BO	RR or Rr
B-	В	no	BB or BO	rr
AB+	A and B	yes	AB	RR or Rr
AB-	A and B	no	AB	rr
O+	none	yes	00	RR or Rr
O-	none	no	00	rr